- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Xiang (1)
-
Lu, Haibing (1)
-
Zhou, Tianxin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Smart grids can be vulnerable to attacks and accidents, and any initial failures in smart grids can grow to a large blackout because of cascading failure. Because of the importance of smart grids in modern society, it is crucial to protect them against cascading failures. Simulation of cascading failures can help identify the most vulnerable transmission lines and guide prioritization in protection planning, hence, it is an effective approach to protect smart grids from cascading failures. However, due to the enormous number of ways that the smart grids may fail initially, it is infeasible to simulate cascading failures at a large scale nor identify the most vulnerable lines efficiently. In this paper, we aim at 1) developing a method to run cascading failure simulations at scale and 2) building simplified, diffusion based cascading failure models to support efficient and theoretically bounded identification of most vulnerable lines. The goals are achieved by first constructing a novel connection between cascading failures and natural languages, and then adapting the powerful transformer model in NLP to learn from cascading failure data. Our trained transformer models have good accuracy in predicting the total number of failed lines in a cascade and identifying the most vulnerable lines. We also constructed independent cascade (IC) diffusion models based on the attention matrices of the transformer models, to support efficient vulnerability analysis with performance bounds.more » « less
An official website of the United States government
